Abstract

In this paper, a differential-geometric method is applied to build some Li–Yau–Hamilton-type Harnack inequalities for the positive solutions to a one spatial dimensional nonlinear reaction–diffusion equation in a plane geometry. The class of reaction–diffusion equation that is considered here contains several important equations some of which are Newel–Whitehead–Segel, Allen–Cahn and Fisher–KPP equations. The Harnack inequalities so derived are used to discuss some other important properties of positive solutions and in the characterization of positive wave solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.