We developed an approach to quantify early life history diversity for Chinook salmon (Oncorhynchus tshawytscha). Early life history diversity (ELHD) is the variation in morphological and behavioral traits expressed within and among populations by individual juvenile salmon during downstream migration. A standard quantitative method does not exist for this prominent concept in salmon biology. For Chinook salmon, ELHD reflects the multitude of possible strategies undertaken during the juvenile (fry through smolt) phases of their life cycle, where a life history strategy (or pattern) describes the combination of traits exhibited by an organism throughout its life cycle. Increasing life history diversity to improve resilience and aid recovery of diminished salmon and steelhead populations is a common objective in fish population recovery efforts. In this paper, we characterized early life history traits and prioritize timing and fish size as two appropriate, measurable dimensions for an ELHD index. We studied diversity index literature, identified an indexing approach based on the effective number of time-size trait combinations, and tested several candidate indices for performance and usefulness in case studies using juvenile salmon catch data from the lower Columbia River and estuary. The recommended ELHD index is diversity expressed as the effective number of time-size trait combinations for the Shannon Index, modified to include an adjustment for missing time-size trait combinations and a sample coverage factor. This index applies to multiple life history strategies of juvenile salmonids; incorporates fish abundance, richness, and evenness; and produces readily interpretable values. The ELHD index can support comparisons across like locales and examinations of trends through time at a given locale. It has application as a high-level indicator to track trends in the status of the recovery of salmon and steelhead populations in the Columbia River basin and elsewhere where salmon recovery efforts are under way.