Our understanding of how the phylogenetic tree of fishes might be affected by the ongoing extinction risk is poor. This is due to the unavailability of comprehensive DNA data, especially for many African lineages. In addition, the ongoing taxonomic confusion within some lineages, e.g., Cyprinidae, makes it difficult to contribute to the debate on how the fish tree of life might be shaped by extinction. Here, we combine COI sequences and taxonomic information to assemble a fully sampled phylogeny of the African Cyprinidae and investigate whether we might lose more phylogenetic diversity (PD) than expected if currently threatened species go extinct. We found evidence for phylogenetic signal in extinction risk, suggesting that some lineages might be at higher risk than others. Based on simulated extinctions, we found that the loss of all threatened species, which approximates 37% of total PD, would lead to a greater loss of PD than expected, although highly evolutionarily distinct species are not particularly at risk. Pending the reconstruction of an improved multi-gene phylogeny, our results suggest that prioritizing high-EDGE species (evolutionary distinct and globally endangered species) in conservation programmes, particularly in some geographic regions, would contribute significantly to safeguarding the tree of life of the African Cyprinidae.