The Kola nuclear power plant, which discharges warm water into one of the bays of subarctic Lake Imandra, significantly changes fish habitats. The temperature gradient of the lake is between 2 and 8 °C, which makes it significantly different from the natural temperature of the lake water. The stenothermal cold-water native species (lake whitefish (Coregonus lavaretus L.)), living for more than 40 years under conditions of thermal pollution, has adapted to this stressor. Moreover, this population differs favorably from the population in the natural-temperature environment in terms of its physiological state. Firstly, the hemoglobin concentrations in the fish blood are in the range of the ecological optimum, and secondly, it has a higher somatic growth, as estimated by Fulton’s condition factor. One of its main adaptive mechanisms of ion regulation is an intense metabolism of Na due to the high respiratory activity of the whitefish in warmer water. An increased accumulation of Rb and excretion of Se, Mo, and Si are associated more or less with that feature. Under conditions of an increased water temperature, the main metabolic need is due to a deficiency of Se in fish. The intensive metabolism of selenoproteins may involve risks of toxic effects and the bioaccumulation of Hg, As, and Cu in cases of increased existing stressors or the appearance of new ones.
Read full abstract