In this study, via an Eulerian–Lagrangian framework, the performance of two recent dispersion models, i.e. a first-order autoregressive process and the PDF model, is compared. The appropriate relations for the turbulence scales and the drift correction term are suggested and the tuned values for the constants of the models are proposed in a systematic approach by starting with the simplest case, i.e. particle-laden stationary isotropic turbulence and adding more complexities in the subsequent cases, including the homogeneous anisotropic shear flow, decaying grid turbulence, and inhomogeneous gas–solid spray. Also, the isotropic relation for the effect of inertia in the Lagrangian turbulence time scale seen by particles is extended to the anisotropic case while it remains consistent in the isotropic limit. Finally, the performance of the tuned models is evaluated for the simulation of an evaporating spray. It is observed that, the tuned constants for the evaporating spray are close to the ones obtained for the homogeneous shear flow.
Read full abstract