We address online combinatorial optimization when the player has a prior over the adversary’s sequence of losses. In this setting, Russo and Van Roy proposed an information theoretic analysis of Thompson Sampling based on the information ratio, allowing for elegant proofs of Bayesian regret bounds. In this paper we introduce three novel ideas to this line of work. First we propose a new quantity, the scale-sensitive information ratio, which allows us to obtain more refined first-order regret bounds (i.e., bounds of the form <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$O(\sqrt {L^{*}})$ </tex-math></inline-formula> where <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$L^{*}$ </tex-math></inline-formula> is the loss of the best combinatorial action). Second we replace the entropy over combinatorial actions by a coordinate entropy, which allows us to obtain the first optimal worst-case bound for Thompson Sampling in the combinatorial setting. We additionally introduce a novel link between Bayesian agents and frequentist confidence intervals. Combining these ideas we show that the classical multi-armed bandit first-order regret bound <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$ \widetilde {O}(\sqrt {d L^{*}})$ </tex-math></inline-formula> still holds true in the more challenging and more general semi-bandit scenario. This latter result improves the previous state of the art bound <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$ \widetilde {O}(\sqrt {(d+m^{3})L^{*}})$ </tex-math></inline-formula> by Lykouris, Sridharan and Tardos. Moreover we sharpen these results with two technical ingredients. The first leverages a recent insight of Zimmert and Lattimore to replace Shannon entropy with more refined potential functions in the analysis. The second is a Thresholded Thompson Sampling algorithm, which slightly modifies the original algorithm by never playing low-probability actions. This thresholding results in fully <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$T$ </tex-math></inline-formula> -independent regret bounds when <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$L^{*}\leq \overline {L} ^{*}$ </tex-math></inline-formula> is almost surely upper-bounded, which we show does not hold for ordinary Thompson Sampling.
Read full abstract