In South Africa, an estimated 11% of the population have high alcohol use, a major risk factor for TB. Alcohol and other substance use are also associated with poor treatment response, with a potential mechanism being altered TB drug pharmacokinetics. To investigate the impact of alcohol and illicit substance use on the pharmacokinetics of first-line TB drugs in participants with pulmonary TB. We prospectively enrolled participants ≥15 years old, without HIV, and initiating drug-susceptible TB treatment in Worcester, South Africa. Alcohol use was measured via self-report and blood biomarkers. Other illicit substances were captured through a urine drug test. Plasma samples were drawn 1 month into treatment pre-dose, and 1.5, 3, 5 and 8 h post-dose. Non-linear mixed-effects modelling was used to describe the pharmacokinetics of rifampicin, isoniazid, pyrazinamide and ethambutol. Alcohol and drug use were tested as covariates. The study included 104 participants, of whom 70% were male, with a median age of 37 years (IQR 27-48). Alcohol use was high, with 42% and 28% of participants having moderate and high alcohol use, respectively. Rifampicin and isoniazid had slightly lower pharmacokinetics compared with previous reports, whereas pyrazinamide and ethambutol were consistent. No significant alcohol use effect was detected, other than 13% higher ethambutol clearance in participants with high alcohol use. Methaqualone use reduced rifampicin bioavailability by 19%. No clinically relevant effect of alcohol use was observed on the pharmacokinetics of first-line TB drugs, suggesting that poor treatment outcome is unlikely due to pharmacokinetic alterations. That methaqualone reduced rifampicin means dose adjustment may be beneficial.