This study evaluated the utilization of a porous coating, derived with electrostatic spray deposition (ESD), as a carrier material for transforming growth factor-beta1 (TGF-beta1). A porous beta-tricalcium phosphate coating was deposited with ESD, and 10 ng of (125) I-labeled TGF-beta1 was loaded on the substrates. A burst release during the first hour of incubation of >90% was observed, in either culture medium or phosphate-buffered saline (PBS). Ninety-nine percent of the growth factor was released after 10 days of incubation. All samples were able to inhibit epithelial cell growth, indicating that the growth factor had remained bioactive after release. Thereafter, osteoblast-like cells were seeded upon substrates with or without 10 ng of TGF-beta1. While proliferation of osteoblast-like cells was increased on TGF-beta1-loaded substrates, differentiation was inhibited or delayed. In conclusion, a porous ESD-derived calcium phosphate coating can be used as a carrier material for TGF-beta1, when a burst release is desired.
Read full abstract