Research on individuals with a younger onset age of schizophrenia is important for identifying neurobiological processes derived from the interaction of genes and the environment that lead to the manifestation of schizophrenia. Schizophrenia has long been recognized as a disorder of dysconnectivity, but it is largely unknown how brain connectivity changes are associated with psychotic symptoms. Twenty-one adolescent-onset schizophrenia (AOS) patients and 21 matched healthy controls (HCs) were recruited and underwent resting-state functional magnetic resonance imaging. Regional homogeneity (ReHo) was used to investigate local brain connectivity alterations in AOS. Regions with significant ReHo changes in patients were selected as "seeds" for further functional connectivity (FC) analysis and Granger causality analysis (GCA), and associations of the obtained functional brain measures with psychotic symptoms in patients with AOS were examined. Compared with HCs, AOS patients showed significantly increased ReHo in the right middle temporal gyrus (MTG), which was positively correlated with PANSS-positive scores, PSYRATS-delusion scores and auditory hallucination scores. With the MTG as the seed, lower connectivity with the bilateral postcentral gyrus (PCG) and higher connectivity with the right precuneus were observed in patients. The reduced FC between the right MTG and bilateral PCG was significantly and positively correlated with hallucination scores. GCA indicated decreased Granger causality from the right MTG to the left middle frontal gyrus (MFG) and from the right MFG to the right MTG in AOS patients, but such effects did not significantly associate with psychotic symptoms. Abnormalities in the connectivity within the MTG and its connectivity with other networks were identified and were significantly correlated with hallucination and delusion ratings. This region may be a key neural substrate of psychotic symptoms in AOS.
Read full abstract