Overnight fires are emerging in North America with previously unknown drivers and implications. This notable phenomenon challenges the traditional understanding of the 'active day, quiet night' model of the diurnal fire cycle1-3 and current fire management practices4,5. Here we demonstrate that drought conditions promote overnight burning, which is a key mechanism fostering large active fires. We examined the hourly diurnal cycle of 23,557 fires and identified 1,095 overnight burning events (OBEs, each defined as a night when a fire burned through the night) in North America during 2017-2020 using geostationary satellite data and terrestrial fire records. A total of99% of OBEs were associated with large fires (>1,000 ha) and at least one OBE was identified in 20% of these large fires. OBEs were early onset after ignition and OBE frequency was positively correlated with fire size. Although warming is weakening the climatological barrier to night-time fires6, we found that the main driver of recent OBEs in large fires was the accumulated fuel dryness and availability (that is, drought conditions), which tended to lead to consecutive OBEs in a single wildfire for several days and even weeks. Critically, we show that daytime drought indicators can predict whether an OBE will occur the following night, which could facilitate early detection and management of night-time fires. We also observed increases in fire weather conditions conducive to OBEs over recentdecades, suggesting an accelerated disruption of the diurnal fire cycle.
Read full abstract