Emergency agencies seek to maintain situational awareness and effective decision making through continuous monitoring of, and real-time alerting about, sources of information regarding current incidents and developing fire hazards. The nature of this goal requires integrating different, potentially numerous, sources of dynamic geospatial information on the one side, and a large number of clients having heterogeneous and specific interests in data on the other side. In such scenarios, the traditional request/reply communication style may function inefficiently, as it is based on point-to-point, synchronous, and pulling mode interaction between consumer clients and information providers/services. In this work, we propose Geospatial-based Publish/Subscribe, an interaction framework that serves as a middleware for real-time transacting of spatially related information of interest, termed geospatial events, in distributed systems. Expressive data models, including geospatial event and geospatial subscription, as well as an efficient matching approach for fast dissemination of geospatial events to interested clients, are introduced. The proposed interaction framework is realized through the development of a Real-Time Fire Emergency Response System (RFERS) prototype. The prototype is designed for transacting several topics of geospatial events that are crucial within the context of fire emergencies, including GPS locations of emergency assets, meteorological observations of wireless sensors, fire incidents reports, and temporal sequences of remote sensing images of active wildfires. The performance of the system prototype has been evaluated in order to demonstrate its efficiency.