The research objectives of this study were to investigate and compare corrosion and fire protective properties of conventional and advanced phosphatic geopolymeric coating on mild steel substrate using spray coating technique For these studies two composition were developed using conventional geopolymerisation route by adding alkali activator solution to fly ash and six compositions were developed using advanced geopolymerisation process in which water was added to solid precursor powder obtained by together co-ginding of raw materials for a period of 8 h. Coated plates were tested for adhesion strength, water resistance, fire protection and corrosion resistance. Results indicated that coating developed from two passes with thickness 100 ± 15 μm showed better adhesion as compared to single pass and also proved to be promising corrosion protective coating material for mild steel substrate under sea water conditions. The developed material is able to withstand flame for more than 45 min and also no cracks were observed in coating by direct heating on liquefied petroleum gas flame. Thus developed phosphatic geopolymeric material is well suited for protecting the mild steel structures from fire and corrosion.