We prove a normal form for contact forms close to a Zoll one and deduce that Zoll contact forms on any closed manifold are local maximizers of the systolic ratio. Corollaries of this result are: (1) sharp local systolic inequalities for Riemannian and Finsler metrics close to Zoll ones, (2) the perturbative case of a conjecture of Viterbo on the symplectic capacity of convex bodies, (3) a generalization of Gromov’s non-squeezing theorem in the intermediate dimensions for symplectomorphisms that are close to linear ones.