Abstract Finite-amplitude Rossby wave activity (FAWA) proposed by Nakamura and Zhu measures the waviness of quasigeostrophic potential vorticity (PV) contours and the associated modification of the zonal-mean zonal circulation, but it does not distinguish longitudinally localized weather anomalies, such as atmospheric blocking. In this article, FAWA is generalized to local wave activity (LWA) to diagnose eddy–mean flow interaction on the regional scale. LWA quantifies longitude-by-longitude contributions to FAWA following the meridional displacement of PV from the circle of equivalent latitude. The zonal average of LWA recovers FAWA. The budget of LWA is governed by the zonal advection of LWA and the radiation stress of Rossby waves. The utility of the diagnostic is tested with a barotropic vorticity equation on a sphere and meteorological reanalysis data. Compared with the previously derived Eulerian impulse-Casimir wave activity, LWA tends to be less filamentary and emphasizes large isolated vortices involving reversals of meridional gradient of potential vorticity. A pronounced Northern Hemisphere blocking episode in late October 2012 is well captured by a high-amplitude, near-stationary LWA. These analyses reveal that the nonacceleration relation holds approximately over regional scales: the growth of phase-averaged LWA and the deceleration of local zonal wind are highly correlated. However, marked departure from the exact nonacceleration relation is also observed during the analyzed blocking event, suggesting that the contributions from nonadiabatic processes to the blocking development are significant.