Logarithmic number system (LNS) is an attractive alternative to realize finite-length impulse response filters because of multiplication in the linear domain being only addition in the logarithmic domain. In the literature, linear coefficients are directly replaced by the logarithmic equivalent. In this paper, an approach to directly optimize the finite word length coefficients in the LNS domain is proposed. This branch and bound algorithm is implemented based on LNS integers and several different branching strategies are proposed and evaluated. Optimal coefficients in the minimax sense are obtained and compared with the traditional finite word length representation in the linear domain as well as using rounding. Results show that the proposed method naturally provides smaller approximation error compared to rounding. Furthermore, they provide insights into finite word length properties of FIR filters coefficients in the LNS domain and show that LNS FIR filters typically provide a better approximation error compared to a standard FIR filter.
Read full abstract