In crystal spectrometers one traditionally labels each position in the dispersion/recording plane by a single wavelength value. A simple examination of the crystal spectrometers shows that different areas of the crystal contribute different wavelengths at the same position in the recording plane. Using collimators and apertures one may reduce these effects, as well as reduce the collected signal. Convolving the system response, in that case, may not allow simple analytic estimates of the sensitivity/responsivity of the system. A Monte-Carlo ray-trace program was written in order to study and simulate the real geometry including finite-source size effects. The results of the code are presented, demonstrating the contributions to the resolution and absolute responsivity, for a particular parabolically bent crystal spectrometer.
Read full abstract