Abstract Quantum digital signature (QDS) can guarantee the information-theoretical security of a signature with the fundamental laws of quantum physics. However, most current QDS protocols do not take source security into account, leading to an overestimation of the signature rate. In this paper, we propose to utilize Hong-Ou-Mandel interference to characterize the upper-bound of the source imperfections, and further to quantify information leakage from potential side-channels. Additionally, we combine decoy-state methods and finite-size analysis in analyzing the signature rate. Simulation results demonstrate the performance and feasibility of our approach. Our current work can improve the practical security of QDS systems, thereby promoting their further networked applications.
Read full abstract