Abstract

Continuous-variable quantum key distribution (CVQKD) plays an important role in quantum communications, because of its compatible setup for optical implementation with low cost. For this paper, we considered a neural network approach to predicting the secret key rate of CVQKD with discrete modulation (DM) through an underwater channel. A long-short-term-memory-(LSTM)-based neural network (NN) model was employed, in order to demonstrate performance improvement when taking into account the secret key rate. The numerical simulations showed that the lower bound of the secret key rate could be achieved for a finite-size analysis, where the LSTM-based neural network (NN) was much better than that of the backward-propagation-(BP)-based neural network (NN). This approach helped to realize the fast derivation of the secret key rate of CVQKD through an underwater channel, indicating that it can be used for improving performance in practical quantum communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.