The supra topological topic is of great importance in preserving some topological properties under conditions weaker than topology and constructing a suitable framework to describe many real-life problems. Herein, we introduce the version of complete Hausdorffness and complete regularity on supra topological spaces and discuss their fundamental properties. We show the relationships between them with the help of examples. In general, we study them in terms of hereditary and topological properties and prove that they are closed under the finite product space. One of the issues we are interested in is showing the easiness and diversity of constructing examples that satisfy supra T i spaces compared with their counterparts on general topology.