We show that the values of the first three cumulants of the baryon number distribution can be used to calculate the isothermal speed of sound and its logarithmic derivative with respect to the baryon number density. We discuss applications of this result to heavy-ion collision experiments and address possible challenges, including effects due to baryon number conservation, differences between proton and baryon cumulants, and the influence of finite number statistics on fluctuation observables in both experiment and hadronic transport simulations. In particular, we investigate the relation between quantities calculated in infinite, continuous matter and observables obtained in simulations using a finite number of particles.
Read full abstract