Let p 1, p 2, p 3 be primes. This is the second article in a series of three on the (p 1, p 2, p 3)-generation of the finite projective special unitary and linear groups PSU3(p n ), PSL3(p n ), where we say a noncyclic group is (p 1, p 2, p 3)-generated if it is a homomorphic image of the triangle group T p 1, p 2, p 3 . This paper is concerned with the case where p 1 = 2 and p 2 = p 3. We determine for any prime p 2 the prime powers p n such that PSU3(p n ) (respectively, PSL3(p n )) is a quotient of T = T 2, p 2, p 2 . We also derive the limit of the probability that a randomly chosen homomorphism in Hom(T, PSU3(p n )) (respectively, Hom(T, PSL3(p n ))) is surjective as p n tends to infinity.