This paper presents two types of concatenated LDPC coding schemes which are viewed as <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">generalized globally coupled</i> ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">GC</i> ) <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">LDPC</i> coding schemes in which outer codes serve as the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">local codes</i> for correcting local errors and inner codes serve as <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">global coupling codes</i> to correct global errors. The first type of concatenated LDPC coding scheme globally couples a finite geometry (FG) LDPC code as the local code and a finite field (FF) LDPC code as the global coupling code. This type of global coupling, called <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">GC-FG/FF-LDPC coupling</i> , combines the distinct features of both FG- and FF-LDPC codes to achieve low error rates at a rapid decoding convergence and an error performance close to the Shannon limit. Decoding of a GC-FG/FF-LDPC code is carried out in <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">two iterative phases</i> , global/local or local/global. In the second type of concatenated LDPC coding scheme, both local and global coupling codes are FF-LDPC codes. If both local and global coupling codes are constructed from the same finite field and have the same graphical structures, a GC-FF/FF-LDPC code can be decoded in one phase or two phases iteratively, otherwise, it can be decoded in two phases. Construction of GC-FF/FF-LDPC codes is very flexible in lengths and rates. The proposed two-phase iterative decoding is practically implementable.