Abstract
In this letter, the stopping sets and stopping distance of finite geometry LDPC (FG-LDPC) codes are studied. It is known that FG-LDPC codes are majority-logic decodable and a lower bound on the minimum distance can be thus obtained. It is shown in this letter that this lower bound on the minimum distance of FG-LDPC codes is also a lower bound on the stopping distance of FG-LDPC codes, which implies that FG-LDPC codes have considerably large stopping distance. This may explain in one respect why some FG-LDPC codes perform well with iterative decoding in spite of having many cycles of length 4 in their Tanner graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.