In this article we use empirical mode decomposition (EMD) to charac- terize the 1994 Northridge, California, earthquake records and investigate the sig- natures carried over from the source rupture process. Comparison of the current study results with existing source inverse solutions that use traditional data processing suggests that the EMD-based characterization contains information that sheds light on aspects of the earthquake rupture process. We first summarize the fundamentals of the EMD and illustrate its features through the analysis of a hypothetical and a real record. Typically, the Northridge strong-motion records are decomposed into eight or nine intrinsic mode functions (IMF's), each of which emphasizes a different oscillation mode with different amplitude and frequency content. The first IMF has the highest-frequency content; frequency content decreases with an increase in IMF component. With the aid of a finite-fault inversion method, we then examine aspects of the source of the 1994 Northridge earthquake that are reflected in the second to fifth IMF components. This study shows that the second IMF is predominantly wave motion generated near the hypocenter, with high-frequency content that might be related to a large stress drop associated with the initiation of the earthquake. As one progresses from the second to the fifth IMF component, there is a general migration of the source region away from the hypocenter with associated longer-period signals as the rupture propagates. This study suggests that the different IMF components carry information on the earthquake rupture process that is expressed in their different frequency bands.
Read full abstract