In this work, we investigate a minimization problem with a convex objective function on a domain, which is the solution set of a common fixed point problem with a finite family of nonexpansive mappings. Our algorithm is a combination of a projected subgradient algorithm and string-averaging projection method with variable strings and variable weights. This algorithm generates a sequence of iterates which are approximate solutions of the corresponding fixed point problem. Additionally, either this sequence also has a minimizing subsequence for our optimization problem or the sequence is strictly Fejer monotone regarding the approximate solution set of the common fixed point problem.
Read full abstract