Cooling small components is becoming an attractive topic for researchers. In this paper, an attempt is made to use an ethylene glycol/water mixture as a cooling liquid. This liquid is a helpful application for when the fluid is in a harsh environment and should not freeze. The experiment uses an ethylene glycol/water mixture circulating through a triply periodic minimal surface structure (TPMS) made of aluminum and silver. A constant heat flux equal to 38,000 W/m2 is applied, and three different flow rates, 11.8 cm3/s, 15.5 cm3/s, and 19.6 cm3/s, are studied. The experimental setup is complemented with numerical modelling by solving the Navier–Stokes equation and the energy equation using the finite element technique. The flow is Newtonian, and a laminar regime is implemented. Results reveal that the performance of the ethylene glycol/water mixture did not enhance heat removal when compared to water. The average Nusselt number is similar regardless of the concentration of ethylene glycol in the mixture. This average Nusselt number, Nuaverage, in the presence of aluminum TPMS ranges between 60 and 80 (60 < Nuaverage < 80) and between 65 and 85 (65 < Nuaverage < 85) using silver TPMS. The increase in the mixture’s viscosity due to ethylene glycol increased the pressure drop. The performance evaluation criteria reach the maximum value of 90 when the mixture is composed of 5%vol ethylene glycol in water with aluminum TPMS. In the presence of silver TPMS, the maximum performance evaluation criterion is around 95 with a 5% ethylene glycol/water mixture. Finally, it is proven experimentally and confirmed numerically that the TPMS structure secures uniform heat extraction from the hot surface.
Read full abstract