There is growing interest in the overlap reduction function in pulsar timing array observations as a probe of modified gravity. However, current approximations to the Hellings–Downs curve for subluminal gravitational wave propagation, say v<1, diverge at small angular pulsar separation. In this paper, we find that the overlap reduction function for the v<1 case is sensitive to finite distance effects. First, we show that finite distance effects introduce an effective cut-off in the spherical harmonics decomposition at ℓ∼1-v2kL, where ℓ is the multipole number, k the wavenumber of the gravitational wave and L the distance to the pulsars. Then, we find that the overlap reduction function in the small angle limit approaches a value given by πkLv2(1-v2)2 times a normalization factor, exactly matching the value for the autocorrelation recently derived. Although we focus on the v<1 case, our formulation is valid for any value of v.
Read full abstract