Let K be a field of characteristic zero. In this paper, we study the polynomial identities of representations of Lie algebras, also called weak identities, or identities of pairs. These identities are determined by pairs of the form (A, L) where A is an associative enveloping algebra for the Lie algebra L. Then a weak identity of (A, L) (or an identity for the representation of L associated to A) is an associative polynomial which vanishes when evaluated on elements of L⊆ A. One of the most influential results in the area of PI algebras was the theory developed by Kemer. A crucial role in it was played by the construction of the Grassmann envelope of an associative algebra and the close relation of the identities of the algebra and its Grassmann envelope. Here we consider varieties of pairs. We prove that under some restrictions one can develop a theory similar to that of Kemer's in the study of identities of representations of Lie algebras. As a consequence, we establish that in the case when K is algebraically closed, if a variety of pairs does not contain pairs corresponding to representations of sl2(K), and if the variety is generated by a pair where the associative algebra is PI then it is soluble. As another consequence of the methods used to obtain the above result, and applying ideas from papers by Giambruno and Zaicev, we were able to construct a pair (A, L) such that its PI exponent (if it exists) cannot be an integer. We recall that the PI exponent exists and is an integer whenever A is an associative (a theorem by Giambruno and Zaicev), or a finite-dimensional Lie algebra (Zaicev). Gordienko also proved that the PI exponent exists and is an integer for finite-dimensional representations of Lie algebras.
Read full abstract