For equations that cannot be solved exactly, the trial function approach to modelling soliton solutions represents a useful approximate technique. It has to be supplemented with the Lagrangian technique or the method of moments to obtain a finite dimensional dynamical system which can be analyzed more easily than the original partial differential equation. We compare these two approaches. Using the cubic-quintic complex Ginzburg-Landau equation as an example, we show that, for a wide class of plausible trial functions, the same system of equations will be obtained. We also explain where the two methods differ.