Solid-state NMR (ssNMR) methods have continued to be developed in recent years for the efficient assignment of signals and 3D structure modeling of biomacromolecules. Consequently, we are approaching an era in which vigorous applications of these methods are more widespread in research, including functional elucidation of biomacromolecules and drug discovery. However, multidimensional ssNMR methods are not as advanced as solution NMR methods, especially for automated data analysis. This article describes how a newly developed Graph_Robot module, implemented in MagRO-NMRViewJ, evolved from integrated tools for NMR data analysis named Kujira (developed by Kobayashi et al. [1]). These packaged tools systematically utilize flexible, sophisticated, yet simple libraries that facilitate only for solution-NMR data analysis, offering an intuitive interface accessible even to novice users. In this study, semi-automated assignments of backbone and side chain signals of ssNMR datasets for uniformly 13C/15N labeled aquaporin Z and 42-residue amyloid-β fibril were examined as examples to demonstrate how Graph_Robot can expedite the visual inspection and handling of multidimensional ssNMR spectral data. In addition, the functionality of the Graph_Robot system enables a computer to interpret the behavior of magnetization transfer based on a finite automaton model.
Read full abstract