Silica is one of the most functional metalloid oxides with a widespread application as semiconductor, fillers, silicone and ceramic primarily due to its structural versatility. In this work, a robust step-wise thermochemical treatment was successfully formulated for the controlled fabrication of high-purity mono-dispersed spherical silica nanoparticle from rice husk. The silica nanoparticle with the desired morphology was formed in two stages; thermal-assisted seed particle formation followed by particle growth through acidification of the solvent modified sodium silicate solution. The obtained powder was characterised, and the effectiveness of the powder for latent fingermark development across varied donors and surfaces was tested at the introductory level. The formed spherical particles were in the range of 200 to 400 nm, as confirmed by FESEM and HRTEM analysis. Minimising the degree of silica nanoparticle agglomeration notably affected their selectivity to fingermark residue. There was a striking improvement in the selectivity of the silica nanoparticle to fingermark residue. The improvement was attributed to the strong interaction between the silica nanoparticle and the lipid components in the fingermark residue, as compared to the commercial white powder that works solely based on mechanical adherence. Additionally, the size and morphology of the fabricated silica nanoparticle were optimised to enhance the clarity of the developed fingermark. Findings of this study could improve quality of fingermarks obtained in a crime scene due to considerably lower background interference without compromising the effectiveness of fingermark development.