PurposeThe purpose of this paper is to present recent work designing a mechanical robotic hand for self‐adaptive grasping, human‐like appearance, which can be used in a humanoid robot. Conventional robotic devices are relatively complex, large, cumbersome and difficult to be installed in a humanoid robot arm. Under‐actuated robot hands use less motors to drive more rotating joints, thus to simplify the mechanical structure, decrease the volume and weight and finally lower the difficulty of control and the cost.Design/methodology/approachA novel under‐actuated finger mechanism is designed, which is based on a gear‐rack mechanism, spring constraint and an active sleeve middle phalanx. The principle analyses of its self‐adaptive grasp and end power grasping are given. A new multi‐fingered hand named as TH‐3R Hand is designed based on the finger.FindingsThe design finger mechanism can be used in a robotic hand to make the hand obtain more degrees of freedom (DOF) with fewer actuators, and good grasping function of shape adaptation, decrease the requirement of control system. TH‐3R Hand has five fingers, 15 DOF. All fingers are similar. TH‐3R Hand has many advantages: it is simple in structure, light in weight, easy to control and low in cost. TH‐3R Hand can passively adapt different shapes and sizes of the grasped object. Experimental studies have demonstrated the self‐adaptation in grasping of the finger.Research limitations/implicationsThe implication of this research is that under‐actuated robotic hands are appropriate for the missions of grasping different objects. The limitation of the research to date is that issues of sensors, control, and communication have not yet been addressed.Practical implicationsKey technologies of the under‐actuated finger and TH‐3R Hand, with self‐adaptive grasping, human‐like appearance and low‐cost lightweight, are feasible. These technologies have the potential to make a significant impact.Originality/valueThese results present a self‐adaptive under‐actuated grasp concept and a humanoid robotic hand with under‐actuated gear‐rack mechanism.
Read full abstract