The nutrient base of aquatic tree-hole communities is derived from leaf litter, benthic detritus, and water flowing down the tree trunk (stemflow water). Previous studies in eastern North America with the mosquito, Aedes triseriatus, have identified leaf litter as a major and stemflow water as a minor source of mosquito nutrition, but did not consider the role of the benthic detritus or how the aggregate or relative contribution of these sources of mosquito nutrition changed during the year. We use the leaf litter, benthic detritus, and stemflow water from tree holes in western Oregon (USA) to determine how these substrates affect mass at metamorphosis, biomass yield, and fitness (cohort replacement rate; R 0) of the mosquito, Aedes sierrensis, through both natural and simulated winters, the normal growing season for larvae in tree holes. We found that fresh leaf litter constitutes the major determinant of mosquito fitness by a factor of >15:1 over any other substrate taken directly from tree holes in nature. The other substrates, including the benthic detritus, individually make only a meager contribution to mosquito fitness but, when added to the leaf litter, can sustain yield and improve fitness at high, limiting larval densities. Nutritional quality of tree-hole substrates declines by >90% from early (fall) to late (spring) in the larval growing season. At both times of year, the coarse or fine detritus provide minor resources, and stemflow water provides no detectable contribution to mosquito nutrition. The resources in the litter are not transported during the year to the benthic detritus; rather, these resources are either exploited by mosquitoes when they first become available, or they deteriorate and become progressively more unavailable to them. Growth and development of A. sierrensis feeding on dried and reconstituted tree-hole contents during a 6-month simulated winter in the laboratory showed: (1) the same relative contributions of leaf litter, benthic detritus, and stemflow water to mosquito nutrition, (2) that the winter deterioration of substrate quality is a direct consequence of microbial decomposition, and (3) that pre-emptive competition from pre-existing A. sierrensis greatly increases substrate deterioration. We conclude that the progressive winter deterioration of larval resources in combination with the dry summers of western North America are the most likely environmental factors that limit species diversity in tree holes and that have selected for early recruitment (autumnal hatching) of A. sierrensis and for its univoltine life cycle from Mexico to Canada.