SMART NoCs achieve ultra-low latency by enabling single-cycle multiple-hop transmission via bypass channels. However, contention along bypass channels can seriously degrade the performance of SMART NoCs by breaking the bypass paths. Therefore, contention-free task mapping and scheduling are essential for optimal system performance. In this article, we propose an SMT (Satisfiability Modulo Theories)-based framework to find optimal contention-free task mappings with minimum application schedule lengths on 2D/3D SMART NoCs with mixed dimension-order routing. On top of SMT’s fast reasoning capability for conditional constraints, we develop efficient search-space reduction techniques to achieve practical scalability. Experiments demonstrate that our SMT framework achieves 10× higher scalability than ILP (Integer Linear Programming) with 931.1× (ranges from 2.2× to 1532.1×) and 1237.1× (ranges from 4× to 4373.8×) faster average runtimes for finding optimum solutions on 2D and 3D SMART NoCs and our 2D and 3D extensions of the SMT framework with mixed dimension-order routing also maintain the improved scalability with the extended and diversified routing paths, resulting in reduced application schedule lengths throughout various application benchmarks.