At present time, an effective tool becomes essential to forecast business failure as well as financial crisis on small- to medium-sized enterprises. This article presents a new optimal feature selection (FS)-based classification model for financial crisis prediction (FCP). The proposed FCP method involves data acquisition, preprocessing, FS, and classification. Initially, the financial data of the enterprises are collected by the use of the internet of things devices, such as smartphones and laptops. Then, the pigeon-inspired optimization (PIO)-based FS technique is applied to choose an optimal set of features. Afterward, the extreme gradient boosting (XGB)-based classification optimized by the Jaya optimization (JO) algorithm called JO-XGB is employed to classify the financial data. The application of the JO algorithm helps to tune the parameters of the XGB model. A detailed experimental validation process takes place to ensure the performance of the presented PIO-JO-XGBoost model. The obtained simulation results verified the effectiveness of the presented model over the compared methods.
Read full abstract