Condensation heat transfer characteristics on the outer annular walls of double-sided horizontal tubes having three different enhancement geometries are investigated experimentally. The enhancement geometries are (1) a fine fin array, (2) a rectangular convex platform array, and (3) a T-shaped column array. The inner surface geometries are threads of various pitches. The experiments are with various mass fluxes, average vapor qualities, and saturation temperatures. They were conducted with refrigerant R410A. The results show the effects of enhancement geometry. Six correlations are used to predict the heat transfer coefficients of smooth tube, and the correlation with the highest accuracy is selected and corrected to obtain a new correlation suitable for the enhanced tubes. The new correlation can predict 92% of the data points within a prediction error of +22% to -30%. Frictional pressure drops are correlated with mass flux, average vapor quality, and saturation temperature. The heat transfer performances of the three experimental tubes are compared using a performance evaluation factor and the enhancement geometries with better condensation heat transfer performances are identified.