Algal blooms worldwide pose many challenges to drinking water production. Pre-oxidation with NaClO, KMnO4, or ozone is commonly used to enhance algal removal in conventional drinking water treatment processes. However, these currently utilized oxidation methods often result in significant algal cell lysis or impede the operation of the subsequent units. Higher algal removal with pre-chlorination in algal solutions prepared with natural water, compared to those prepared with ultrapure water, has been observed. In the present studies, preliminary findings indicate that ammonium in natural water alters chlorine species to NH2Cl, leading to improved treatment efficiency. NH2Cl with 1.5–3.0 mg∙L−1 as Cl2 with an oxidation time of 3–7 h significantly enhancing algal removal by coagulation. The selective oxidation of surface-absorbed organic matter (S-AOM) by NH2Cl, followed by the subsequent peeling off of this material from the algal surface, leading to an increase in zeta potential from −20.2 mV to −3.8 mV, constitutes the primary mechanism of enhanced algal removal through coagulation. These peeled S-AOM retained their large molecular weight and acted as polymer aids. Compared with NaClO and KMnO4, NH2Cl displays the best performance in improving algal removal, avoiding cell lysis, and decreasing the potential for nitrogenous disinfection byproducts formation under the reaction conditions used in this study. Notably, in major Chinese cities, water purification plants commonly rely on suburban lakes or reservoirs as water sources, necessitating the transportation of raw water over long distances for times up to several hours. These conditions favor the implementation of NH2Cl pre-oxidation. The collective results indicate the potential of NH2Cl oxidation as a viable pretreatment strategy for algal contamination during water treatment processes.
Read full abstract