This paper is concerned with event-triggered generalized dissipativity filtering for a neural network (NN) with a time-varying delay. The signal transmission from the NN to its filter is completed through a communication channel. It is assumed that the network measurement of the NN is sampled periodically. An event-triggered communication scheme is introduced to design a suitable filter such that precious communication resources can be saved significantly while certain filtering performance can be ensured. On the one hand, the event-triggered communication scheme is devised to select only those sampled signals violating a certain threshold to be transmitted, which directly leads to saving of precious communication resources. On the other hand, the filtering error system is modeled as a time-delay system closely dependent on the parameters of the event-triggered scheme. Based on this model, a suitable filter is designed such that certain filtering performance can be ensured, provided that a set of linear matrix inequalities are satisfied. Furthermore, since a generalized dissipativity performance index is introduced, several kinds of event-triggered filtering issues, such as H∞ filtering, passive filtering, mixed H∞ and passive filtering, (Q,S,R) -dissipative filtering, and L2 - L∞ filtering, are solved in a unified framework. Finally, two examples are given to illustrate the effectiveness of the proposed method.