Grease, a type of lubricant, finds applications in various mechanical components due to advantages such as shape stability and sealing. However, grease is classified as a non-Newtonian fluid, and its film formation behavior is not fully understood to date due to variations in the mechanism related to the film formation behavior of grease based on factors like the base oil, bleed oil, thickener, and additives. In this study, the film formation behavior of fluorine-based grease was analyzed through the 3D profile of the grease after a friction test. In particular, the film formation behavior of the grease during sliding motion was analyzed. The experimental equipment used was a reciprocating-motion-type experimental equipment. Variations in the 3D profile were observed based on the speed and the cycle, indicating differences in the film formation behavior corresponding to changes in viscosity. In contrast to numerous studies that have observed the film formation behavior of grease under rolling motion, investigating the film formation behavior during the initial cycles of sliding motion will provide a profound understanding of the grease’s film formation process.