Abstract. Land surface models (LSMs) require reliable forcing, validation, and surface attribute data as the foundation for effective model development and improvement. Eddy covariance flux tower data are widely regarded as the benchmark for LSMs. However, currently available flux tower datasets often require multiple aspects of processing to ensure data quality before application to LSMs. More importantly, these datasets frequently lack site-observed attribute data, such as fractional vegetation cover and leaf area index, which limits their utility as benchmarking data. Here, we conducted a comprehensive quality screening of the existing reprocessed flux tower dataset, including the proportion of gap-filled data, energy balance closure (EBC), and external disturbances such as irrigation and deforestation, leading to 90 high-quality sites. For these sites, we collected vegetation, soil, and topography data as well as wind speed, temperature, and humidity measurement heights from literature; regional networks; and Biological, Ancillary, Disturbance, and Metadata (BADM) files. We then compiled the final flux tower attribute dataset by filling in missing attributes with global data and classifying plant functional types (PFTs). This dataset is provided in NetCDF (Network Common Data Form) format with necessary descriptions and reference sources. Model simulations revealed substantial disparities in the output between the attribute data observed at the site and those commonly used by LSMs, underscoring the critical role of site-observed attribute data and increasing the emphasis on flux tower attribute data in the LSM community. The dataset addresses the lack of the site attribute to some extent, reduces uncertainty in LSM data source, and aids in diagnosing parameter and process deficiencies. The dataset is available at https://doi.org/10.5281/zenodo.12596218 (Shi et al., 2024).
Read full abstract