We consider a fundamental file dissemination problem in a two-hop relay-based heterogeneous network consisting of a macro base station, a half-duplex relay station, and multiple users. To minimize the dissemination delay, rateless code is employed at the base station. Our goal is to find an efficient channel-aware scheduling policy at the half-duplex relay station, i.e., either fetch a packet from the base station or broadcast a packet to the users at each time slot, such that the file dissemination delay is minimized. We formulate the scheduling problem as a Markov decision process and propose an intelligent deep reinforcement learning-based scheduling algorithm. We also extend the proposed algorithm to adapt to dynamic network conditions. Simulation results demonstrate that the proposed algorithm performs very close to a lower bound on the dissemination delay and significantly outperforms baseline schemes.
Read full abstract