Abstract A complete understanding of the initial conditions of high-mass star formation and what processes determine multiplicity requires the study of the magnetic field in young massive cores. Using Atacama Large Millimeter/submillimeter Array (ALMA) 250 GHz polarization observations (0 . ″ 3 = 1000 au) and ALMA 220 GHz high-angular-resolution observations (0 . ″ 05 = 160 au), we have performed a full energy analysis including the magnetic field at core scales and have assessed what influences the multiplicity inside a massive core previously believed to be in the prestellar phase. With a mass of 31 M ⊙, the G11.92 MM2 core has a young CS molecular outflow with a dynamical timescale of a few thousand years. At high resolution, the MM2 core fragments into a binary system, with a projected separation of 505 au and a binary mass ratio of 1.14. Using the Davis–Chandrasekhar–Fermi method with an angle dispersion function analysis, we estimate in this core a magnetic field strength of 6.2 mG and a mass-to-magnetic-flux ratio of 18. The MM2 core is strongly subvirialized, with a virial parameter of 0.064, including the magnetic field. The high mass-to-magnetic-flux ratio and low virial parameter indicate that this massive core is very likely undergoing runaway collapse, which is in direct contradiction with the core accretion model. The MM2 core is embedded in a filament that has a velocity gradient consistent with infall. In line with clump-fed scenarios, the core can grow in mass at a rate of 1.9–5.6 × 10−4 M ⊙ yr−1. In spite of the magnetic field having only a minor contribution to the total energy budget at core scales (a few thousands of astronomical units), it likely plays a more important role at smaller scales (a few hundreds of astronomical units) by setting the binary properties. Considering energy ratios and a fragmentation criterion at the core scale, the binary system could have been formed by core fragmentation. The binary system properties (projected separation and mass ratio), however, are also consistent with radiation-magnetohydrodynamic simulations with super-Alfvenic or supersonic (or sonic) turbulence that form binaries by disk fragmentation.
Read full abstract