The presence of refractory micropollutants in natural waters poses significant environmental and health risks. Preferably, advanced oxidation techniques like electro-Fenton (EF) and bio-electro-Fenton (BEF) are used to mitigate micropollutants; nevertheless, their field-scale implementation is limited by prohibitive catalyst cost. As an alternative, waste-iron electrocoagulated algal biomass (A-BC/Fe) was explored as a heterogeneous Fenton catalyst to eliminate dimethyl phthalate (DMP) from wastewater. The Fenton-conducive morphological, chemical, and electrochemical properties of the A-BC/Fe catalyst were revealed by detailed characterisation. In EF treatment, 10 mg/L of DMP was completely degraded within 15 min at pH of 7.0, 50 mM Na2SO4, and cathode potential of − 1.4 V vs. Ag/AgCl. Moreover, the EF system achieved 87.80 ± 2.10% and 96.14 ± 1.10% of DMP removal from secondary and tertiary treated municipal sewage, respectively. The A-BC/Fe catalyst-driven EF process disintegrated DMP into benign non-toxic by-products and showed stable performance over eight batch cycles with only a 1.71% decline in DMP removal efficiency. Further, the A-BC/Fe-catalysed BEF system eliminated 94.81 ± 1.90% of DMP in 4 h while achieving a maximum power density of 124.03 ± 5.64 mW/m2. This investigation underscores the potential of repurposing electrocoagulated algal biomass as a sustainable heterogenous catalyst for micropollutant remediation.
Read full abstract