The transportation problems (TPs) are a fundamental case-study topic in operations research, particularly in the field of linear programming (LP). The TPs are solved in full resolution by using two types of methods: initial basic feasible solution (IBFS) and optimal methods. In this paper, we suggest a novel IBFS method for enhanced reduction in the transportation cost associated with the TPs. The new method searches for the range in columns of the transportation table only, and selects the maximum range to carry out allocations, and is therefore referred to as the maximum range column method (MRCM). The performance of the proposed MRCM has been compared against three traditional methods: North-West-Corner (NWCM), Least cost (LCM) and Vogel’s approximation (VAM) on a comprehensive database of 140 transportation problems from the literature. The optimal solutions of the 140 problems obtained by using the TORA software with the modified distribution (MODI) method have been taken as reference from a previous benchmark study. The IBFSs obtained by the proposed method against NWCM, LCM and VAM are mostly optimal, and in some cases closer to the optimal solutions as compared to the other methods. Exhaustive performance has been discussed based on absolute and relative error distributions, and percentage optimality and nonoptimality for the benchmark problems. It is demonstrated that the proposed MRCM is a far better IBFS method for efficiently solving the TPs as compared to the other discussed methods, and can be promoted in place of the traditional methods based on its performance.
Read full abstract