The disordered pyrochlore oxide Dy2Zr2O7 shows the signatures of field-induced spin freezing with remnant zero-point spin-ice entropy at 5 kOe magnetic field. We have performed zero-field and longitudinal field Muon spin relaxation (µSR) studies on Dy2Zr2O7. Our zero field studies reveal the absence of both long-range ordering and spin freezing down to 62 mK. The µSR relaxation rate exhibits a temperature-independent plateau below 4 K, indicating a dynamic ground state of fluctuating spins similar to the well-known spin ice system Dy2Ti2O7. The low-temperature spin fluctuations persist in the longitudinal field of 20 kOe as well and show unusual field dependence of the relaxation rate, which is uncommon for a spin-liquid system. Our results, combined with the previous studies do not show any evidence of spin ice or spin glass ground state, rather point to a disorder-induced dynamic magnetic ground state in the Dy2Zr2O7 material.
Read full abstract