AbstractPurpose:To measure and compare the skin doses received by treated left breast and contralateral breast (CB) during whole breast radiotherapy using five treatment techniques in an indigenously prepared wax breast phantom.Materials and methods:Computed tomography (CT) images of the breast phantom were used for treatment planning and comparison of skin dose calculated from treatment planning system (TPS) with measured dose. Planning target volume (PTV) and the CB were drawn arbitrarily on the CT images acquired for the breast phantom with 10 numbers of calibrated optically stimulated luminescent dosimeters (OSLDs) fixed on the surface of both breasts. The TPS calculated surface doses of PTV breast and CB for five treatment planning techniques, viz., conventional wedge (CW), irregular surface compensator-based (ISC), field-in-field (FiF), intensity-modulated radiotherapy (IMRT) and rapid arc (RA) techniques were obtained for comparison. The plans were executed in Clinac iX Linear Accelerator with the OSLDs fixed at the same locations on the phantom as in simulation. The TPS calculated mean dose at the surface of the treated left breast and CB was noted for the 10 OSLDs from dose-volume histogram (DVH) and compared with the measured dose. Also, the mean chamber dose at the centre of the left breast was noted from the DVH for comparing with ion chamber measured dose.Results:With reference to the results, it is seen that the dose to the CB is lowest in ISC technique and FiF technique and greatest in IMRT technique. The CW technique also delivered a dose comparable to IMRT to the CB of the phantom. The dose to the surface of PTV breast was highest and comparable in CW plans and FiF plans (68% and 67%) and lowest in IMRT and RA plans (50% each).Findings:Analysis of the results shows that the FiF and ISC techniques are preferred while planning breast radiotherapy due to the reduced dose to the CB.
Read full abstract