In this study, the development and characterization of 2D ferroelectric field-effect transistor (2D FeFET) devices are presented, utilizing nanoscale ferroelectric HfZrO2 (HZO) and 2D semiconductors. The fabricated device demonstrated multi-level data storage capabilities. It successfully emulated essential biological characteristics, including excitatory/inhibitory postsynaptic currents (EPSC/IPSC), Pair-Pulse Facilitation (PPF), and Spike-Timing Dependent Plasticity (STDP). Extensive endurance tests ensured robust stability (107 switching cycles, 105 s (extrapolated to 10 years)), excellent linearity, and high Gmax /Gmin ratio (>105 ), all of which are essential for realizing multi-level data states (>7-bit operation). Beyond mimicking synaptic functionalities, the device achieved a pattern recognition accuracy of ≈94% on the Modified National Institute of Standards and Technology (MNIST) handwritten dataset when incorporated into a neural network, demonstrating its potential as an effective component in neuromorphic systems. The successful implementation of the 2D FeFET device paves the way for the development of high-efficiency, ultralow-power neuromorphic hardware which is in sub-femtojoule (48 aJ/spike) and fast response (1 µs), which is 104 folds faster than human synapse (≈10ms). The results of the research underline the potential of nanoscale ferroelectric and 2D materials in building the next generation of artificial intelligence technologies.