基于质谱的蛋白质组学技术已经日趋成熟,可以对细胞和组织中的成千上万种蛋白质进行全面的定性和定量分析,逐步实现“深度覆盖”。随着生物医学日益增长的大队列蛋白质组学分析需求,如何在保持较为理想的覆盖深度下实现短时间、快速的“高通量”蛋白质组学分析已成为当前亟需解决的关键问题之一。常规的蛋白质组学分析流程通常包括样品前处理、色谱分离、质谱检测和数据分析。该文从以上4个方面展开介绍近10年以来高通量蛋白质组学分析技术取得的一系列研究进展,主要包括:(1)基于高通量、自动化移液工作站的蛋白质组样品前处理方法;(2)基于微升流速液相色谱与质谱联用的高通量蛋白质组检测方法;(3)利用灵敏度高、扫描速度快的质谱仪实现短色谱梯度分离下蛋白质组深度覆盖的分析方法;(4)基于人工智能、深度神经网络、机器学习等的蛋白质组学大数据分析方法。此外,对高通量蛋白质组学面临的挑战及其发展进行展望。总而言之,预期在不久的将来高通量蛋白质组学技术将会逐步“落地转化”,成为大队列蛋白质组学分析的利器。
Read full abstract