Perception-based fidelity evaluation metrics are crucial in driving simulators, as they play a key role in the automatic tuning, assessment, and comparison of motion cueing algorithms. Nevertheless, there is presently no unified and effective evaluation framework for these algorithms. To tackle this challenge, our study initially establishes a model rooted in visual–vestibular interaction and head tilt angle perception systems. We then employ metrics like the Normalized Average Absolute Difference (NAAD), Normalized Pearson Correlation (NPC), and Estimated Delay (ED) to devise an evaluation index system. Furthermore, we use a combined approach incorporating CRITIC and gray relational analysis to ascertain the weights of these indicators. This allows us to consolidate them into a comprehensive evaluation metric that reflects the overall fidelity of motion cueing algorithms. Subjective evaluation experiments validate the reasonableness and efficacy of our proposed Perception Fidelity Evaluation (PFE) method.