The meniscus is a fibrocartilaginous tissue that plays an essential role in load transmission, lubrication, and stabilization of the knee. Loss of meniscus function, through degeneration or trauma, can lead to osteoarthritis in the underlying articular cartilage. To perform its crucial function, the meniscus extracellular matrix has a particular organization, including collagen fiber bundles running circumferentially, allowing the tissue to withstand tensile hoop stresses developed during axial loading. Given its critical role in preserving the health of the knee, better understanding structure-function relations of the biomechanical properties of the meniscus is critical. The main objective of this study was to measure the compressive modulus of porcine meniscus using Atomic Force Microscopy (AFM); the effects of three key factors were investigated: direction (axial, circumferential), compartment (medial, lateral) and region (inner, outer). Porcine menisci were prepared in 8 groups (= 2 directions x 2 compartments x 2 regions) with n = 9 per group. A custom AFM was used to obtain force-indentation curves, which were then curve-fit with the Hertz model to determine the tissue's compressive modulus. The compressive modulus ranged from 0.75 to 4.00 MPa across the 8 groups, with an averaged value of 2.04±0.86MPa. Only direction had a significant effect on meniscus compressive modulus (circumferential > axial, p = 0.024), in agreement with earlier studies demonstrating that mechanical properties in the tissue are anisotropic. This behavior is likely the result of the particular collagen fiber arrangement in the tissue and plays a key role in load transmission capability. This study provides important information on the micromechanical properties of the meniscus, which is crucial for understanding tissue pathophysiology, as well as for developing novel treatments for tissue repair.
Read full abstract